427 research outputs found

    Transport of magnetoexcitons in single and coupled quantum wells

    Full text link
    The transport relaxation time τ(P)\tau (P) and the mean free path of magnetoexcitons in single and coupled quantum wells are calculated (PP is the magnetic momentum of the magnetoexciton). We present the results for magnetoexciton scattering in a random field due to (i) quantum well width fluctuations, (ii) composite fluctuations and (iii) ionized impurities. The time τ(P)\tau(P) depends nonmonotonously on PP in the case (ii) and in the cases (i), (iii) for D/lD/l smaller than some critical value (DD is the interwell separation, l=c/eHl=\sqrt{\hbar c/eH} is the magnetic length). For D/l1D/l\gg 1 the transport relaxation time increases monotonously with PP. The magnetoexciton mean free path λ(P)\lambda (P) has a maximum at P0P\ne 0 in the cases (i), (iii). It decreases with increasing D/lD/l. The mean free path calculated for the case (ii) may have two maxima. One of them disappears with the variation of the random fields parameters. The maximum of λ(P)\lambda (P) increases with HH for types (i,iii) of scattering processes and decreases in the case (ii).Comment: 13 pages, 8 figures in EPS format; Physica Scripta (in print

    Cooper pairing of electrons and holes in graphene bilayer: Correlation effects

    Full text link
    Cooper pairing of spatially separated electrons and holes in graphene bilayer is studied beyond the mean-field approximation. Suppression of the screening at large distances, caused by appearance of the gap, is considered self-consistently. A mutual positive feedback between appearance of the gap and enlargement of the interaction leads to a sharp transition to correlated state with greatly increased gap above some critical value of the coupling strength. At coupling strength below the critical, this correlation effect increases the gap approximately by a factor of two. The maximal coupling strength achievable in experiments is close to the critical value. This indicated importance of correlation effects in closely-spaced graphene bilayers at weak substrate dielectric screening. Another effect beyond mean-field approximation considered is an influence of vertex corrections on the pairing, which is shown to be very weak.Comment: 6 pages, 5 figures; some references were adde

    Phases of a bilayer Fermi gas

    Full text link
    We investigate a two-species Fermi gas in which one species is confined in two parallel layers and interacts with the other species in the three-dimensional space by a tunable short-range interaction. Based on the controlled weak coupling analysis and the exact three-body calculation, we show that the system has a rich phase diagram in the plane of the effective scattering length and the layer separation. Resulting phases include an interlayer s-wave pairing, an intralayer p-wave pairing, a dimer Bose-Einstein condensation, and a Fermi gas of stable Efimov-like trimers. Our system provides a widely applicable scheme to induce long-range interlayer correlations in ultracold atoms.Comment: 5 pages, 5 figures; (v2) stability of trimer is emphasized; (v3) published versio

    Quasiequilibrium supersolid phase of a two-dimensional dipolar crystal

    Full text link
    We have studied the possible existence of a supersolid phase of a two-dimensional dipolar crystal using quantum Monte Carlo methods at zero temperature. Our results show that the commensurate solid is not a supersolid in the thermodynamic limit. The presence of vacancies or interstitials turns the solid into a supersolid phase even when a tiny fraction of them are present in a macroscopic system. The effective interaction between vacancies is repulsive making a quasiequilibrium dipolar supersolid possible.Comment: 5 pages, 4 figure

    Bose-Einstein condensation of trapped polaritons in 2D electron-hole systems in a high magnetic field

    Full text link
    The Bose-Einstein condensation (BEC) of magnetoexcitonic polaritons in two-dimensional (2D) electron-hole system embedded in a semiconductor microcavity in a high magnetic field BB is predicted. There are two physical realizations of 2D electron-hole system under consideration: a graphene layer and quantum well (QW). A 2D gas of magnetoexcitonic polaritons is considered in a planar harmonic potential trap. Two possible physical realizations of this trapping potential are assumed: inhomogeneous local stress or harmonic electric field potential applied to excitons and a parabolic shape of the semiconductor cavity causing the trapping of microcavity photons. The effective Hamiltonian of the ideal gas of cavity polaritons in a QW and graphene in a high magnetic field and the BEC temperature as functions of magnetic field are obtained. It is shown that the effective polariton mass MeffM_{\rm eff} increases with magnetic field as B1/2B^{1/2}. The BEC critical temperature Tc(0)T_{c}^{(0)} decreases as B1/4B^{-1/4} and increases with the spring constant of the parabolic trap. The Rabi splitting related to the creation of a magnetoexciton in a high magnetic field in graphene and QW is obtained. It is shown that Rabi splitting in graphene can be controlled by the external magnetic field since it is proportional to B1/4B^{-1/4}, while in a QW the Rabi splitting does not depend on the magnetic field when it is strong.Comment: 16 pages, 6 figures. accepted in Physical Review

    Quantum phase transition in a two-dimensional system of dipoles

    Full text link
    The ground-state phase diagram of a two-dimensional Bose system with dipole-dipole interactions is studied by means of quantum Monte Carlo technique. Our calculation predicts a quantum phase transition from gas to solid phase when the density increases. In the gas phase the condensate fraction is calculated as a function of the density. Using Feynman approximation, the collective excitation branch is studied and appearance of a roton minimum is observed. Results of the static structure factor at both sides of the gas-solid phase are also presented. The Lindeman ratio at the transition point comes to be γ=0.230(6)\gamma = 0.230(6). The condensate fraction in the gas phase is estimated as a function of the density.Comment: 4 figures v.3 One citation added, updated Fig.4. Minor changes following referee's and editor's comment

    Quantum orientational melting of mesoscopic clusters

    Full text link
    By path integral Monte Carlo simulations we study the phase diagram of two - dimensional mesoscopic clusters formed by electrons in a semiconductor quantum dot or by indirect magnetoexcitons in double quantum dots. At zero (or sufficiently small) temperature, as quantum fluctuations of particles increase, two types of quantum disordering phenomena take place: first, at small values of quantum de Boer parameter q < 0.01 one can observe a transition from a completely ordered state to that in which different shells of the cluster, being internally ordered, are orientationally disordered relative to each other. At much greater strengths of quantum fluctuations, at q=0.1, the transition to a disordered (superfluid for the boson system) state takes place.Comment: 4 pages, 6 Postscript figure

    Excitonic condensate and quasiparticle transport in electron-hole bilayer systems

    Full text link
    Bilayer electron-hole systems undergo excitonic condensation when the distance d between the layers is smaller than the typical distance between particles within a layer. All excitons in this condensate have a fixed dipole moment which points perpendicular to the layers, and therefore this condensate of dipoles couples to external electromagnetic fields. We study the transport properties of this dipolar condensate system based on a phenomenological model which takes into account contributions from the condensate and quasiparticles. We discuss, in particular, the drag and counterflow transport, in-plane Josephson effect, and noise in the in-plane currents in the condensate state which provides a direct measure of the superfluid collective-mode velocity.Comment: 7 pages, 3 figure

    Superfluidity of "dirty" indirect excitons and magnetoexcitons in two-dimensional trap

    Full text link
    The superfluid phase transition of bosons in a two-dimensional (2D) system with disorder and an external parabolic potential is studied. The theory is applied to experiments on indirect excitons in coupled quantum wells. The random field is allowed to be large compared to the dipole-dipole repulsion between excitons. The slope of the external parabolic trap is assumed to change slowly enough to apply the local density approximation (LDA) for the superfluid density, which allows us to calculate the Kosterlitz-Thouless temperature Tc(n(r))T_{c}(n(r)) at each local point rr of the trap. The superfluid phase occurs around the center of the trap (r=0\mathbf{r}=0) with the normal phase outside this area. As temperature increases, the superfluid area shrinks and disappears at temperature Tc(n(r=0))T_{c}(n(r=0)). Disorder acts to deplete the condensate; the minimal total number of excitons for which superfluidity exists increases with disorder at fixed temperature. If the disorder is large enough, it can destroy the superfluid entirely. The effect of magnetic field is also calculated for the case of indirect excitons. In a strong magnetic field HH, the superfluid component decreases, primarily due to the change of the exciton effective mass.Comment: 13 pages, 3 figure
    corecore